Photodynamic N-TiO2 Nanoparticle Treatment Induces Controlled ROS-mediated Autophagy and Terminal Differentiation of Leukemia Cells
نویسندگان
چکیده
In this study, we used nitrogen-doped titanium dioxide (N-TiO2) NPs in conjugation with visible light, and show that both reactive oxygen species (ROS) and autophagy are induced by this novel NP-based photodynamic therapy (PDT) system. While well-dispersed N-TiO2 NPs (≤100 μg/ml) were inert, their photo-activation with visible light led to ROS-mediated autophagy in leukemia K562 cells and normal peripheral lymphocytes, and this increased in parallel with increasing NP concentrations and light doses. At a constant light energy (12 J/cm2), increasing N-TiO2 NP concentrations increased ROS levels to trigger autophagy-dependent megakaryocytic terminal differentiation in K562 cells. By contrast, an ROS challenge induced by high N-TiO2 NP concentrations led to autophagy-associated apoptotic cell death. Using chemical autophagy inhibitors (3-methyladenine and Bafilomycin A1), we confirmed that autophagy is required for both terminal differentiation and apoptosis induced by photo-activated N-TiO2. Pre-incubation of leukemic cells with ROS scavengers muted the effect of N-TiO2 NP-based PDT on cell fate, highlighting the upstream role of ROS in our system. In summary, PDT using N-TiO2 NPs provides an effective method of priming autophagy by ROS induction. The capability of photo-activated N-TiO2 NPs in obtaining desirable cellular outcomes represents a novel therapeutic strategy of cancer cells.
منابع مشابه
Upconversion nanoparticle-mediated photodynamic therapy induces autophagy and cholesterol efflux of macrophage-derived foam cells via ROS generation
Macrophage-derived foam cells are a major component of atherosclerotic plaques and have an important role in the progression of atherosclerotic plaques, thus posing a great threat to human health. Photodynamic therapy (PDT) has emerged as a therapeutic strategy for atherosclerosis. Here, we investigated the effect of PDT mediated by upconversion fluorescent nanoparticles encapsulating chlorin e...
متن کاملCuscuta campestris induces apoptosis by increasing reactive oxygen species generation in human leukemic cells
Objective: Cuscuta campestris or common dodder is a holoparasitic plant that has been valorized for treatment of liver injury and cancer prevention in traditional medicine. Recently, extract of C. campestris had shown moderate antimicrobial properties and cytotoxic effects. In this study, we examined the level of cellular oxidants, cytotoxicity, apoptosis and differentiation induced by hydr...
متن کاملAloe-emodin-mediated photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell line MG-63 through the ROS/JNK signaling pathway
The present study was carried out to investigate the effect and mechanisms of aloe‑emodin (AE)-mediated photodynamic therapy (AE-PDT) on the human osteosarcoma cell line MG-63. After treatment with AE-PDT, the human osteosarcoma cell line MG-63 was tested for levels of viability, autophagy, reactive oxygen species (ROS) and apoptosis and changes in cell morphology with the Cell Counting Kit-8 (...
متن کاملStudying the effects of Curcumin mediated by iron oxide nanoparticle for treatment of breast cancer with method of photodynamic therapy
This article has no abstract.
متن کاملTetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells
All-trans retinoic acid (ATRA) is a differentiating agent for the treatment of acute promyelocytic leukemia (APL). However, the therapeutic efficacy of ATRA has limitations. Tetrandrine is a traditional Chinese medicinal herb extract with antitumor effects. In this study, we investigated the effects of tetrandrine on human PML-RARα-positive acute promyelocytic leukemia cells. Tetrandrine inhibi...
متن کامل